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APPROXIMATE EQUATIONS FOR TRANSPORT COEFFICIENTS OF

MULTICOMPONENT MIXTURES OF NEUTRAL GASES

I. Introduction

A description of multicomponent gas mixtures which contains the

effects of fluid dynamics and chemical reactions is necessary for model-

ling many reactive flow systems. A 4uantitative description of such

systems often must include an accurate treatment of transport phenomena,

in which heat and particles diffuse through the mixture. Our particular

interest in accurately modelling combustion processes has thus led us to

survey and compare existing theories of transport phenomena in mixtures

of neutral gases in order to identify representations which are suitable

for numerical calculations. In this paper, we present the results of our

work on (ordinary) diffusion, viscosity, thermal conductivity, and thermal

diffusion.

To show how these transport processes enter our calculations, we

consider the equations for conservation of mass, particle number, momentum,

and energy, which may be written as follows:

+- 0 (.1)
at

at (nlz) • -n +Q' Lin
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Tt- - _ Pv~v 0  P (1.3)

V _ (Evo ) - V (yo " P ) - V • q (1.4)

Here Yo is the fluid velocity and P,P 0 , and E are the total mass,

momentum, and energy densities of the gas mixture, respectively. The

sets of variables {n1}, {Q1 }, and {L I refer respectively to the number

densities of the chemical species (labelled by i) and the rates of

production and loss of the species as a result of chemical reactions.

As we show in Appendix A, the transport coefficients enter the

conservation equations through the pressure tensor P, the heat flux

and the diffusion velocities which represent the average

velocities of the species relative to the fluid velocity, m. The

pressure tensor P depends on the scalar pressure P and the viscosity

of the mixture. The variables V I and s are functions of (ordinary)

diffusion, thermal conductivity, and thermal diffusion. In Appendix A,

we consider these relationships in detail.

The remaining sections of this paper present equations for the

transport coefficients which represent the above processes in the

conservation equations. In developing and identifying the formulas

we have attempted to strike a balance between accuracy and computational

simplicity. In the accompanying discussions, we have supplemented the

major works on the theory of transport phenomena in gas mixturesI1 2 by

citing publications which have extended the theory and by comenting on

the consistency among and limitations of the various formulations. We have

also sought to clarify points of confusion arising from differences in

2
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methods of approximation and in notation used by various authors.

Because the text will often mention references 1 and 2, we will

use the respective designations 'HCB" and "CC" to identify them for the

reader. We will employ the notation of HCB except when we are dealing

with notational differences among authors and when we discuss vectors

(e.g., V), tensors (e.g., !), and the thermal diffusion coefficients

{DTi}. In references to HCB and CC we cite the equation and page

numbers, respectively, abbreviating the word "equation(s)" by "eq."

(e.g., HCB,eq. (8.1-1), 516). We will express physical quantities in

CGS units and will write units in parentheses beside the related definitions

and equations.

. . 3
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II. Basic Formulations of the Theory of Transport Phenomena

Before stating the equations for cransport coefficients in multi-

component gas mixtures, we will outline the approaches of HCB and CC in

deriving the fundamental relations from which our equations originate.

HCB and CC begin with the Boltzmann distribution functions (f i} which

satisfy the Boltzmann equations for the species in the gas mixture:

i v-+ 1- ( i -) M J (fit)
-i -i

(i - 1, 2 ..... v),

where f is a function of the position vector r (cm), the velocity

th -1vector of the i species v1 (cm sec ), and the time t(sec). The

external force on each molecule of species i is Xi (dynes); the mass of

a molecule of type i is mi(g); the 3(fi' fJ)I are collision integrals;

and V is the number of species comprising the gas mixture. The authors

assume that the {fi} may be expressed in terms of an infinitd perturba-

tion series

f -f 0] + fi 1] + ff 2] . .....

(i - 1, 2 ...... , V) (11.2)

where the lowest order term is Mixwellian, i.e.,

f - i )3/2 exp .2 (.3)
i 2irkT I T

In eq. (11.3), ni is the number density of species i(cm-3 ),k is

4



Boltzmann's constant C- 1.380662 x 10- 1 6 erg K-); T is the temperature

0( K); and Vo(r,t) is the mass average (or fluid) velocity of the gas

mixture given by

V ( (cm sec )1
Yo (r,t)i S J!,PiYJ (11.4)i-i

In eq. (11.4), p(r,t) is the total mass density of the mixture and is equal

to the sum of the species mass densities (p }:
i

S- i (gm cm-3 (11.5)

i-1

where the individual mass densities p are given by

i  mi  (i - 1,2 ...... ,. (1 .6)

Also in eq. (11.4) we have vi, the average velocity of species i, defined

by

v(r,t) 1 1ff(r~vi~t) v i dv 1  (cm sec-1  (11.7)

Given sufficiently rapid convergenceof the series in eq. (II.2), we

may use the first two terms to approximate fi; HCB and CC use the following

form:
f (r,vi,t) ." fio (r_,yi,t) 1+ (r,vi,tI,

(i - 1,2 ...... V), (11.8)



jwhere the function 01 is found to be linear in V, the tensor 7O

and a set of quantities {d~ }, so that

3v

(A 74a) - (B) (Vv 0) + a C d (11.9)

1i 1,2 .......v).

In eq. (11.9), Aand the set {C }are vectors, !,is a second-rank
-i

tensor, and

* di 0nx +(x -- ) P- mi V2 X - (c&5  (11.10)

1i 1,2 ...... v

*where P is the total scalar pressure, x 1 is the mole fraction of species i given

by

n i 
(11.11)

and n is the total number density equal to

V

n En. (11.12)

The quantities A and are all functions of the "peculiar velocity"

V.defined by

Yi (rVit Y- (CM sec) (11.13)

6



or, alternatively, the reduced velocity,

W-. V2_ ), i (cm sec) (11.14)

We then have

-i= Ai W)i (11.15)

- i(Wi)Wi

( J )  Q ( Wi' ad (11.16)

1 2
B.B,(Wi) (wiwi - -W U), (11.17)

where the unit tensor is

.3 1 0 0
See (11.18)

and

W:L1 i
.  

(II.19)

We must distinguish between the peculiar velocity Y, in eq. (11.13) and

the "diffusion velocity" - which is the average peculiar velocity of

species i (i.e, the average rate of flow of species i relative to the mass

average velocity of the mixture). Thus we have

" - Y (11.20)

7
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and, by eqs.(II.4) and (11.6), the set {V i} satisfies the relation

V V

E nim - Pi 0V- (11.21)
i-i i=l

From the above formalism, HCB and CC derive the transport

coefficients in terms of integral equations containing 0 and

along with AV COi ) or B depending on the particular transport coefficient

being calculated. The approximate solution of these complicated equations

requires two further steps:

(1) Expand the functions A., c'(J) and Bi in terms of the Sonine

polynomials {S(m)(x)}, which satisfy a particularly convenient orthogonality
n

condition(see Appendix B). This gives us the form:

I: (Wi) t im n (Wi) (11.22)
m

where t j) is equal to Ais Bi, or CMD and the number n is, respectively,

3/2, 5/2, or 3/2.

4,5(2) Derive (integral) equations satisfied by the sets {Ai},

{Bi}, and {C j )} and use them in conjunction with (11.22) to solve for
expansion coefficients t These steps result in approximate equations

im

for the transport coefficients in terms of a finite set of the

(j)
tim

8



Unfortunately for the reader, HCB and CC calculate the expansion

coefficients ti) in different ways .To develop an "mth order" approxi-

mation, HCB initially use expansions consisting of only the m lowest order

Sonine polynomials, solving variationally for the coefficients. CC use

expansions containing an infinite set of Sonine polynomials and develop

expressions which may in theory be solved for the infinite set of coef-

ficients. They then cut off the expansions at order m to obtain their

tmth _ order" approximations for the transport coefficients. These

techniques result in somewhat different equations at each order of

approximation; however, we demonstrate later that, for most purposes, the

differences are not significant.

The approximate equations for the mixture transport coefficients which

are derived by HCB and CC take the form of ratios of determinants of order

X Z v +1 and £-1, respectively, where again v is the number of species in

the mixture. The elements of the determinants are complicated functions

of collision integrals, the evaluation of which would require a significant

amount of computer time. Consequently the expressions derived by HCB and CC

are impractical for use in models of reactive flows. Subsequent work,

however, has produced accurate, semi-empirical equations which are simple to

evaluate. The remaining sections of this paper discuss these equations.

9



III. (Ordinary) Diffusion

A. Binary Mixtures (v-2)

We will use the symbol ij to denote the "ordinary" (or"concen-

tration") diffusion coefficient of a binary mixture containing

species i and j. Marrero and Mason 6have found that, for many

'A binary mixtures of dilute gases, the existing experimental data are

sufficiently extensive, consistent, and accurate to permit the

development of a semi-empirical expression which describes the variation

of 40 over a wide temperature range(3000K < T - 100000K) and which has

a standard deviation of 10% or less. Based on the qualitative

temperature dependence of the quantity POj, where P is the pressure,

Marrero and Mason used the following form to fit the more accurate and

consistent data:

AT
s

1aemp = (111.1)

exp ( exp )kT Tx T2

where A, s,cp0, S and S' are empirical constants. The empirical

~emp isi nt f 2 -1diffusion coefficient, Aij , is in units of cm sec , and P is in

units of atmospheres. (One atmosphere equals 1.01325 x 10 dynes cm

The terms containing S and S' are the "Sutherland-Reinganum terms", which

are used to account for the attractive portion of the intermolecular

potential. Marrero and Mason fit most of the less precise data to the form

10



P emp Tsij A ' ' (I.2~P

where A' and s' are empirical constants. The function in eq.(III.2)

is much easier to evaluate and provides sufficient accuracy for reactive

flow calculations. In those cases for which Marrero and Mason have fit

the data to eq.(III.1), we suggest using eq.(III.l) to generate values of

Po9 at various temperatures and then fitting these to eq.(III.2).

For most intermediate or highly reactive species, experimental data

do not exist over the large range of temperatures required for reactive

flow calculations. We must then rely on a theoretical expression for

i which is based on kinetic theory. HCB and CC have derived the
ij

ifollowing equation for [ iJJ1 the first (or lowest nonzero order)

approximation to
iii

3T (M i + M ) 2 -l (

0.0026280 (cm sec (111.3)
S(T* r)

ij j j i j

where M is the molecular weight of species i, P is the pressure in

atmospheres, and aij' often called the collision diameter, is a force

constant in the potential function

e f  n (111.4)rlj

which describes the interactions between molecules of species i and J.

We may describe oaj as the value of the spherical coordinate rj atiij

which 0 is equal to zero. The other constant, i equals
ii1
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the depth of the potential well(or the maximum energy of attraction).

Unfortunately values of a and Pi are not available in most cases;
ij ii~

so we will use the customary representations.

a =1 (a + aF), (111.5)

0 -8measured in A (IA -10 cm), and

ij E. (111.6)

measured in ergs. In eq.(III.5) and (111.6), the symbols a, ande

denote the force constants in eq. (111.4) for interactions between molecules

of the same species i. Eq.(III.5) is exact for rigid spherical molecules

while eq. (111.6) follows from the theory of the "London dispersion forces"8 .

Finally, the collision integral aij (Ti*) , is actually a ratio9

ij i s culy ai

*(l,l)

2(l,l) ij (111.7)
ij [a(l,l)

ij Rigid Sphere

where the collision integral a(l,l) is related to that defined in CC by
ij

(l,l) .(lQM ) (111.8)

ij ii

Note that Sij measures the departure of a ij from its value in a

model assuming rigid spherical molecules. The collision integral is

a function of a reduced temperature

12



* _kT (111.9)
ij ij

To obtain values of e and a.. we suggest using the tabulations of
ii 1j.410 11and a i given by Svehla and HCB for interactions described by the

Lennard-Jones potential,

. (r) = 412 _ (111.10)Li L~F)~
12 (RSHCB also provide a table of collision integrals Q (2S)for small

values of Z and s. Table III-1 compares values for fij calculated from

'ij

the semiempirical formulas of Marrero and Mason with those calculated trom

eq (111.3-10). At low temperatures the agreement is quite good; however,

the disparity increases with temperature. As in the case of eq. (III.1),

we may transform eq.(III.3) to the form of eq.(III.2) by using eq.(111.3)

to generate values of POj at various temperatures and then fitting these

values to eq. (III.2).

Based on the assumption of rigid spherical molecules, Cheung et al3

and Mason and Saxena14 have derived an approximate equation forD for

mixtures of nonpolar gases:

i M ll 
2

ik 2/ 2 nk k M
M

- 1 (1 + a ) El[ + (J) (. k 2 ( 1 . 1

2,r - Mk k M i

3ik

13
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eq.((1r111)-1 -laO-1 )

In eq. (III.), (erg cm sec K ) is the coefficient of thermal

conductivity calculated for a gas consisting only of species i at the

same pressure and temperature as the mixture being studied (Ti a T

P, a Pmix) and with the internal degrees of freedom "frozen". The

last condition means that species i is treated as a monatomic gas

(Section V). Similarly, n (gmn cm-1 sec - )

is the coefficient of viscosity of a gas consisting of only species

i at the same temperature and pressure as the mixture being studied

(Section IV). The quantity 40 is the coefficient of "self-diffusion",

for which we can use the first approximation,15

- 0.0026280 2 ( 2ii~ ~ ~ ~~; "ri-2 ll3T
)i  (cm2 sec-l, (I.2

where all quantities are defined as in the case of eq. (111.3) and 
we

have substituted aj and T* for a and T~i, respectively. In eq. (IV.l0)

we also present a semi-empirical expression fore 0 . Table 111-2

compares experimental values of wiiwth those calculated from eq.

(111.12). Again the agreement is quite good.

15
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12Cheung et al, have shown that the 0 iJ calculated fro; eq.(III.11) using

experimentally determined viscosity coefficients agrees quite well with the

ratio Jii/JDij calculated from eqs.(III.3) and (111.12) using a Lennard-Jones

potential. Discrepencies will, however, arise because the derivation of eq.

(III.11) relies on the assumption of rigid sperical molecules.

B. Multicomponent Mixtures (v > 2)

The calculation of diffusion coefficients (denoted D as opposed to

ij) for mixtures of more than two species requires the evaluation ofii

determinants of order v and the associated minors.17'18 For more than four

species, the calculation of the set {Dij } could become expensive; fortunately,

both BCB and CC have derived expressions relating ordinary diffusion to other

transport properties in terms of &iJ the first approximation to the binary

diffusion coefficient given in eq.(III.3). We mention that,' while ijl1 is

the same in the formulations of HCB and CC, the first approximation to Dij

(denoted [Dij ) is not. We infer this from the fact that 19

EDij 21CC (111.13)

while eq.(111.13) does not hold in the case of HCB.17 Thus we have

D CB CC
[D [D3 (111.14)

17
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a situation which we also find for coefficients of thermal diffusion (Section

VI).

From a practical point of view, the above disagreement between the

theoretical formulations may not be too significant. Marrero and Mason6

point out that the major difference between Dij and ij lies in the dependence

of Dij on the relative amounts of all species rather than just species i and

j as in the case of ij. Because the experimental uncertainties in measurements

of D and%tj are often of the same order of magnitude as the variations in

composition, Marrero and Mason suggest that

emp emp

ij - ,( .

where "emp" signifies empirically determined quantities.

C. Summuary

From the above discussions, we find that good experimental data and simple

empirical formulas exist for binary diffusion coefficients of. many species. For

those which are not adequately covered by measurements, we may use either eq.

(III.3)or the combination of eqs. (III.11) and (111.12). Because HCB and CC have

constructed the equations describing diffusion and other transport phenomena

in terms of the binary diffusion coefficients, we need not calculate the

multicomponent coefficients of diffusion, which are defined differently by

HCB and CC.

18



IV. Viscosity

A. Pure Gas

For a pure gas (i.e., one which contains only one species), we may

calculate the coefficient of viscosity, ni, by using the expression
20

266.9 X i-7 -/M.

Chil " 2669 xi22 10 (g cm-1 sec-1)(VI

hi da (2,2) defn (:V,

where [ri Idenotes the first (i.e., lowest nonzero order) approximation to

n n,2 is a ratio of collision integrals defined by

S(2,2)
a(2,2) * = a 1 (IV.2)

E[ (2,2)2
Rigid-Sphere

where the collision integral Q (2,2) is related to that defined in CC by
ii

S (2,2) a :(2)(2) (IV.3)
ii ii

HCB21 have compared experimental viscosity data with values calculated from

eq. (IV.l) and eq. (I11.10) for several species over a temperature range of

80 - 15000K and have found deviations of less that 5% in all cases. For

sufficiently restricted temperature ranges we might simplify the calculations by

substituting a constant for ai 2'2)* which is a slowly varying function of

reduced temperature T * As we showed in eq. (I11.11), En and [X; are

closely related; we will show this relationship explicitly in Section V.

19



B. Multicomponent Mixtures (v k 2)

For mixtures of two or more gases, we may express the first approximation

to the coefficient of viscosity, [mn J, as a ratio of determinants of order

v + 1 and v, respectively, in which the elements are complicated functions of

collision integrals. 22  Of more use in reactive flow calculations is an

alternate expression derived by expanding the determinants and discarding the

off-diagonal elements. This results in the functional form
23

x 2

ximix , '1 = 2 ,V
i-l + c RT

k#i

(IV.4)

. [hill
ls

RT
0 x i Pi k-I [Aik11

k#i

where [n] 1 is the first approximation to the coefficient of viscosity of

a gas containing only species i at the temperature and pressure of the

mixture being studied, a is an empirical constant, and R is the "molar gas
0

constant" given by

7 -1 -l1IV5
R-Nk - 8.31441 x 10 erg mol K1

with Avogadro's number given by

23 -T- 6.022045 x 10 mol-  (IV.6)

20



ii
We may also express eq. (.V.4) in terms of P h eniy(go'

gas containing only species i at the temperature and pressure of the mixture,

by using the ideal gas law:

PV - T RT. (IV.7)

Here T is the number of moles of a gas containing only species i at the same

temperature and pressure as the mixture (and not the number of moles of species

i in the mixture). We then obtain

[nmx] I  1 xr (IV.8)

i x k-l k

k~i

We point out again that P is not the density of species i in the mixture;

rather p is tue density corresponding to Ti in eq. (IV.7). Using a
i

heuristic treatment, 3uddenberg and Wilke24 obtained eq. (IV.8) with

nmix and ni substituted for [n mix]land [n1ll and evaluated a to be approximately

1.385 by comparing (IV.8) with available viscosity data for binary mix-

tures. Table IV-l shows that we can calculate values of nmix which are

in excellent agreement with experimental data for mixtures of two, three,

and four components by using eq. (IV.8) with -%0 1.385 and experimental

values of p' and Mi. The dependence of eq. (IV.8) on binary diffusion

coefficients, for which data are often unavailable, can make calculations

of mixture viscosities more difficult and less accurate. Wilke 25 , there-

fore, developed the following equation for [n mix]1 in terms of the quan-

Cities (0 i}, defined by eq. (III.11):

21



Table V1

Comparison of Theoretical and Experimental Values of
* Viscosity Coefficients of Gas Mixtures at 2980K and 1 Atmosphere

*Gas Mole mx(Ex erimental)26  n m(Th oretical)
Mixture Fractions mi 1 a-gg cm-1 sec-1  107tg cm-' sec'1

N 2-0 2  0.1864-0.3136 200.8 197.4 24,a

0.7822-0.2178 184.3 180.6 24,a

H 2-CO 0.1927-0.8073 171.7 171.9 24,a

0.6947-0.3053 144.9 149.6 24,a

He-Ar 0.3405-0.6595 227.8 227.0 24,a

0.7565-0.2435 227.0 227.8 24,a

Ne-H 2-C0 2  0.333-0.333-0.333 185.7 195.3 24,a 190.2 25,b-

Ne-H 2-C0 2  0.25-0.25-0.25-0,25 168.1 162.3 24a159.3 2

-Cc1 F2

*After Buddenberg and Wilke. 24

a. From eq. (IV.8) of this paper.

b. From eq. (IV.9) of this paper.
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nmix (IV. 9)

mi lXiO i
- k- i
k~i

Vn
i

k-i x- ik

Using eq. (III.11), (IV.8), and (IV.9) we may derive a simple approximate

formula for i. the coefficient of self diffusion:
ii

nl . (IV.IO)1.385

Table IV-I shows that eq. (IV.9), when used with experimental values of nf

will give excellent agreement with experimental data for mixtures of up to

four components. We also note that eq. (IV.9) has some advantages over

eq. (IV.8) because $ik depends only on the molecular weights and the viscosities

of the individual components. By eq. (IV.1), we have

i 2 a (2 ,2)*(Tk)i( ak Ukk
-Mk 2 -- * (IV.ll)ai  ,.(22)

and from eq. (I.11) and eq.(IV.l1), we obtain

+i '7k 1 k (T k)I
Ak 1 kaFl+ n (2,2)* (T ]2 (IV.12)
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Depending on the species in the mixture and the size of the reduced temp-

erature range of interest (T, T*), we might simplify eq. IV. 12 by

replacing

. I .-"2,2) c
ki (22)* (.13)

a ii (T )

with its average over (T*, T*). For models involving a large range ofA B
reduced temperatures, accurate calculations will require the use of a

Table of Q(2,2)* values vs. T* or an accurate fit of a convenient func-

tional form to the tabulated values.
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V. Thermal Conductivity

The expression for the coefficient of thermal conductivity for a

mixture of reacting gases, Xmix' is often quite complex, as we indicate in

Appendices A, D, and E. Depending on the speeds of the reactions and on

the lifetimes of the excited states of each molecule, we may express

Xmix as follows:

0 + Xin t + Xcomp (V.1)mix mix mix mix

In eq.(V.l), X (sometimes called the "translational thermal'Mix

conductivity") is a function of the set {AO i1,2,...v} of thermal

conductivities of the individual species, each treated as monatomic.

The second term, A it accounts for the transport of internal energy

by molecules in different quantum states, and the last term, X comp
mix

describes heat conduction resulting from changes in the composition of

the mixture through chemical reactions. We must point out, however, that

the heat flux resulting from changes in chemical composition of the mixture

may be represented as

qcomp N comp VT (V.2)
- mix -

only if the steady state chemical composition is very nearly in equilibrium

with the local temperature T. Because this depends on the reaction rates
icomp

in the forward and reverse directions, the term kmix in eq.(V.l-2) is

not always applicable. We have, therefore, derived the following general

expression for cmp in Appendix 0:
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V
qcomp x <H> (V.3)
- i-i -1

where ?Lis the number of moles in the gas mixture and <H > is the

experimentally determined enthalpy per mole of gas species i. We may

now restate eq.(V.l) as

Xmi Xmix + mix (V.4)

In the remaining sections, we will discuss X x and Xintx in detail.

A. Pure Gas

For a gas consisting of only one species, we first consider X,

which is calculated assuming that the gas is monatomic or that the

internal degrees of freedom are frozen. HCB27 give the following expression

for the first approximation, [Xi] 1

[0o]I  8.322 X 103 T ( - i
PA i 2  (2,2)* ( ) (erg cm sec K . (V.5)

i ii (Ti

By eq.(IV.l) and eq.(V.5), we find that [nip1 and [X] 1 are clsoely related, i.e.

1  3.208 X 10-9 Mi[ ]l. (V.6)

For polyatomic molecules, of course, the internal degrees of freedom

are not frozen, and the diffusion of molecules of species i in different

quantum states will transport energy through the gas. We may represent this

process approximately by using the Eucken factor,27 Ei. with eq.(V.5) as

follows:
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0 o + Xint X0 E (V.7)
*± i i i i

Hirschefelder28-31 has derived the following equation for E from the

kinetic theory of gases (Appendix E):

C
Ei a 0.115 + 0.354 - - (V.8)

iR

- 0.115 + 0.354 Y-

where c . is the constant pressure molar specific heat for molecular

species i,

Y -A (V.9)

and c is the constant volume molar specific heat for molecular species

i.

Hirschfelder assumed the following in order to derive eq.(V.8):

(1) The gas exists in a steady state.

(2) The composition of the gas (i.e., population of the various quantum

levels) is in equilibrium with the local temperature. Only when this

assumption holds will the heat conductivity be independent of boundary

conditions, permitting us to express the heat flux due to internal

degrees of freedom as

in int (V.10)ai i ZT-

I, for example, an appreciable fraction of the molecules were to exist
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7-- 
VOW- -

in metastable states, the population of states would not be a function

temperature only. Eq. (V.10) would then be incorrect and Xint would not
L

provide a meaningful representation of polyatomic effects.

(3) The coefficients of diffusion for all quantum states with a noanegli-

gible population are approximately the same. This is usually the case,

except when excited electronic states are appreciably populated. Such states

a 0have collision diameters a which are on the order of 3a., where a isi 1

the label of the quantum state and ot - 0 signifies the ground state. The large

values of a for excited electronic states result in much smaller diffusion

coefficients, which vary as (aa) , than for the ground electronic state,

and consequently the Eucken factor would predict a Xi which is larger than

the experimental data would indicate.

(4) Nonadiabatic collisions do not appreciably distort the molecular

distribution functions (r , t) Ia - 0,1,2 . } for the various

quantum species a. This holds in the case of electronic and vibrational

states. However, at "low" temperatures, where rotational transitions become

important in collisional energy transfer, rather large distortions do occur

in the distribution functions, leading to anomalously small experimental

values of A i For nonpolar molecules, "low temperature" means 470 0K,

while for polar molecules, "low temperature" signifies room temperature.

Fortunately the Eucken factor works well at higher temperatures which

are of interest in reactive flow problems, because the distortions due to

rotational transitions are less important.

Appendix E shows how these assumptions are used to derive E . Subsequent

work32-34 has accounted for the affects of the inelastic collisions

mentioned above and has resulted in an Eucken type factor which involves
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only measurable quantities plus the relaxation time associated with the

transfer of energy due rotational transitions in collisions. CC35

indicate that these results are highly model dependent and are currently

impractical for application to reactive flow calculations.

B. Multicomponent Mixtures (v z 2)

HCB 36derive [Lmlx l, the first approximation to X .xfor monatomic

gases, in terms of a ratio of determinants of orders 2v + 1 and 2v,

respectively, plus a term involving thermal diffusion and ordinary diffusion

coefficients. Subsequent work37-41 has led to a simpler equation

involving only a ratio of determinants of order v + 1 and v, respectively.

As we indicated in Section I, the "first approximation", [X mixl, differs

from author to author because different methods of approximation have been

used. Mason37 used Kihara's method,42 in which derivatives with respect to

temperature of a particular set of functions of collision integrals Q(,s)
ij

are discarded. Muckenfuss and Curtiss39 used the variational equations of HCB,

and CC41 used truncation of an infinite series expansion to develop a set

of v coupled equations for Xmix(i)°]i where

V0 0[X mix], X1 xi 1 (V.ll)
i-i

We show in Appendix C that the equations of CC lead to a ratio of

determinants of orders v + 1 and v, respectively, with elements that differ

only slightly from those of Mason
37 and Muckenfuss and Curtiss.39

Unfortunately the above formulas depend on functions of collision integrals

which are nonlinear functions of temperature.
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Subsequently Mason et al.14'43 have found that the off-diagonal

elements of the determinants could be neglected and that the portion of the

diagonal elements which contains the collision integrals could be replaced

by an empirical constant. The derivation then parallels Wilke's 25 treatment

of the mixture coefficient of viscosity and results in the following

semi-empirical formula:

V x0X] B E (V.12)
mix 1 V

xi kEixk Gik

k~i

where

G - 1.065 0ik (V.13)

The factor 1.065 is the value of the empirical constant mentioned above

and is the only difference in functional form between XI and

[n mix 1 in eq. (IV.9). Table V-1 shows that, for mixtures of rare gases

(Ne-Ar-Kr and He-Ar-Xe), we can obtain excellent agreement with

experimental data by using eq.(V.12,13) in conjunction with empirical values

of X . Similar agreement exists for binary mixtures.14

intWe must now consider the correction X due to the internal degrees of
mix

freedom of polyatomic molecules. Hirschfelder 30 has derived the fo..lowing

equation:
xo

X nt Ei "i _ (V.14)

mix +~i VP __

x i ik
k-l
k3i
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where X is given approximately by eq.(V.7) and eq.(V.8) and is the

experimentally determined coefficient of thermal conductivity of a gas

consisting only of species i. By using eq.(III.11) in eq. (V.14), we

obtain

int i V.15)

x 1 k-I Xk Oik

k#i

Comparing eq.(V.12), eq.(V.13), and eq.(V.I5), we see that only the small

difference between Gik and Oik prevents us from combining them in a simple

14manner. Mason, in fact, substituted Gik for 0 ik in eq.(V.15) to obtain

int (V.16)mix mi 1 mix +- L - V k

i-. Lz ik
j k-I

Table V-I shows that eq. (V.16),when used with experimentally determined

values of Iand , is quite accurate. Several authors'' 4 have used

heuristic arguments rather than the rigorous kinetic theory of gases to

derive similar equations.
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VI. Thermal Diffusion

The equations for the transport coefficients related to thermal

diffusion are more complex and confusing than those discussed in previous

sections for the following reasons:

(1) Thermal diffusion is a "second-order" effect, and to evaluate the

coefficient of thermal diffusion for species i, denoted DTi accurately,

we require a Sonine polynomial expansion with more terms than for other

transport coefficients.

(2) The coefficients of thermal diffusion are more sensitive to the

composition of a gas mixture than are the coefficients representing

other transport phenomena.

(3) Because of (1) and (2) above, experiments and theoretical studies

have often emphasized binary mixtures, thus impairing our ability to

verify the accuracy of formulas for multicomponent mixtures in general.

(4) Three quantities often appear in theoretical work--DTV kTi

(thermal diffusion ratio), and aij (thermal diffusion factor). Authors

differ on the definition of D and sometimes (e.g., HCB) fail to show

explicitly how the three are related for multicomponent mixtures with

v > 2. CC are also inconsistent in their deflnitions of kTi for v - 2

and v > 2.

(5) Some of the most authoritative papers on the subject also involve

the most complex mathematics and notation, requiring a significant

effort for most readers to gain a working knowledge of the equations.

In this section we deal with the above problems in addition to

providing a set of useful equations for thermal diffusion coefficients
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of multicomponent mixtures. While we use and compare information

derived from several sources, we prefer CC because the relationships

among (DT±, kTi, C} are stated most clearly and completely. For this

reason, we use the notation of CC in this section, rather than the

notation of HCB.

A. Thermal Diffusion Coefficients {D Ti

The product of 72n T and DTi' the thermal diffusion coefficient

for species i in a multicomponent mixture, appears in eq. (A.3) of

Appendix A for the diffusion velocity V. Upon reviewing the litera-

ture,55 58 we find that CC, HCB, and Waldman (W) all define DTi

differently. Because we will be more interested in the thermal

diffusion ratio, k.i, which is identical in all three formulations,
_HCB Wt

this subsection will only explore the relationships among DTi , D W

and D rather than giving expressions for evaluating them in terms
Ti

of properties of a given gas mixture. In the next subsection, we will

show how they are related to the set ({kT }.

The equations defining the set D Ti} in the three formulations

are as follows:

V 
C

H:V- i- - Ti m- ZHCB: V _HCB d 1 _LDCB VLT '

-- D -j Ti (VI.lb)

W: V-rn D d -D 7 ;a T .Ic
-. i i-i i=j Ti - (I
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Eq. (VI.la-c) show explicitly the relationships of the respective

D Ti to the diffusion velocity and multicomponent diffusion coefficients.

We readily see that the associated units are cm2 sec-(DC), g cm 1

se-(HCB 2scl(WT
DTi ), and cm2 secl(D i). The first term of eq. (VI.lb) differs

in sign from those of eq. (VI.la,c) because the related term in

yI0 , , t) as defined by HCB (see eq. (11.9)) differs in sign from

the corresponding term in the other formulations. The quantity Ai. is

a "generalized diffusion coefficient" and is not equal to D, the

multicomponent diffusion coefficient in the formulation of CC,as we

show in Appendix F. Waldmann defines his diffusion velocity V, as

the velocity of species i relative to the average particle velocity of

the mixture,

Z v x. ,  (VI.2)
i

rather than the mass average velocity v; so we have

-i-i -M

This is the primary distinction between the formulations of CC and

Waldmann.
59

For consistency with eq. (11.21), which constrains the diffusion

velocities in the formulations of CC and HCB, and with the equation

V- (VI.4)
i-3
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in the treatment of Waldmann, the respective authors have defined

constraint equations for the sets (D Ti

ccCC DT (VI.5a)

H CB
HCB: z D =0 (VI.5b)

V

W: 4" WT (VI.5c)

From eq. (VI.l) and (VI.5), we infer that the values of D Ti given by

the three formulations are related by

cc HCB W

This will be of use to us in Section VI.B and Appendix F. For complete-

ness, we also list the constraints on the multicomponent diffusion

coefficients:

V V

CC: Pi A - 0 (VI.7a)
J-1 j ijJu

HCB: Di -C .0 (VI.7b)

V V
U: Z x D -' xi D -0. (VI.7c)

J.1l ij i ii

From eq. (VI.7a-c), we see that the ordinary diffusion coefficients

36



for multicomponent mixtures are quite different. Fortunately, as we

have pointed out in Section III, HCB and CC have derived expressions

for the transport coefficients and diffusion velocities in terms of

the binary diffusion coefficients r , which are equal in the two

treatments.

A general equation for [DTill,the first approximation to the

thermal diffusion coefficient for species i, appears in HCB. 60 In the

next section, we will show how DTi may be obtained from the thermal

diffusion ratios {kT J.

B. Thermal Diffusion Ratios {k Ti} and Thermal Diffusion Factors {a.}

Most data from experimental studies of thermal diffusion are

presented in terms of the thermal diffusion ratios {kTi}, which are

unitless. We may understand this emphasis on kTi by considering eq.

(A.4) of Appendix A,

. V X.X.

Usually measurements take place after the gas mixture has reached

equilibrium and under conditions in which pressure gradients and

external forces are negligible. Eq. (A.4) then becomes

xi + kTi _ T 0 0, (VI.8)

and kTi therefore indicates the changes in equilibrium concentration
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of species i caused by a temperature gradient in the sample. Because

is so closely related to experimental measurements, we expect that,

unlike the situation for the thermal diffusion coefficients {D }, the
Ti

treatments of CC, HCB, and Waldmann should provide values of ki

which are very close or identical. As an example, we show in

Appendix F that kTj is identical in the treatments of binary mixtures

given by CC and HCB.

To define the thermal diffusion ratios formally, both CC6 1 and

Waldmann5 7 ,58 use the same type of equation, i.e.,

V
DCC M AJ J (VI.9)

and

w WDTi D k , (VI.O)D iTi ii TiJ-1

respectively. Notice that by using eq. (VI.6) with either eq. (VI.9)

or eq. (VI.10), we may calculate the thermal diffusion coefficients

in any of the formulations given values for (kT} and a set of

diffusion coefficients. Because the thermal diffusion coefficients

are related by eq. (VI.5), we require the auxilliary condition,62

*kTi 0 (VI.11)

to define the set (ki} unambiguously. The thermal diffusion factors

{alj } are defined in terms of the thermal diffusion ratios by the set

of equationsS 7,58 ,63
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V

kTi Z x ix i j (-,2 (VI. 12)±i (i1, 2, .. v)(y.)

with the auxilliary conditions

a =  a ji" (VI.13)

CC4 1'64 have developed the following useful equation for the

first approximation to the thermal diffusion ratio of species i,

[kTi]l, which is based on the assumption that the gases in the mix-

ture are monatomic (or that the internal degrees of freedom are

frozen):

v TCi(xiaImi - xaim)Jkrill 11j ' (vI. 14)
J-i P 60i1l (mi + in)

The quantity Cij is the ratio of collision integrals appearing in

eq. (C.1O) of Appendix C and ai is the contribution of the ith

species to the mixture thermal conductivity [Xix]I . In Appendix C,

we show that

a, [Xmixi) l 1 - . (C.l-2)

1 1 k ik
Sk-l
k~i

CC argue that the internal degrees of freedom of the gas molecules

have a smaller effect on kTi than on Xmix . Monchick, et al. 65 add
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the condition that the mass and size differences among the species

should not both be small. Otherwise, inelastic effects due to non-

spherical interactions (e.g., rotational relaxation) must be taken

into account. An example of a mixture for which internal degrees of

freedom may not be ignored is the D2-HT system, an "isotopic" mixture,

in which both molecular species are approximately the same in mass

and size. For such mixtures, Monchick, et al., have derived the correc-

tions to [kTi]I due to the internal degrees of freedom of the molecules.

We may convert eq. (VI.14) to a more useful form by using

1 i + C c*j (c.10)
ii 5 1 (1lO

the ideal gas law,

P - nkT, (VI.15)

and the relationship between {mi} and iMi} 

mi H i
S(i, j -1, 2, "-', v). (C.9)

m ji + m Mi + Mj

We then obtain

1 (AC* xix HiM a[k 11 6 1 1 ..1
IkTi J1 . nk[I j i . i +  Mij kx X iM

(vI. 16)

je ± uix i(6C¢i- 5) a a,
i 5n [Pi 40
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with

MiM
iJ M + Hi (VI.17)

This is the same form of equation derived by Monchick, et al.,66

for [(fi]1 ; however, their equation for ai includes effects related to

internal degrees of freedom and is more complicated from a computational

standpoint. Monchick, et al., point out that their result reduces to

that of CC for mixtures of monatomic gases. The presence of C*, which

is of order unity, increases the complexity of eq. (VI.16). If the

reduced temperature range of interest (TA, TB ) is small enough, we

might simplify our calculations by substituting the average value of
*. * * *(T (T)i q(V.6

over (TA, T ) for Cin eq.(VI.16)ii B ii

*

S TB * ( T * ) T(vI.18)
C -j T* ii V.)

TB -TA TA

For large temperature variations, accurate calculations will require

the use of a table of Cij values vs. T or an accurate fit of a

convenient functional form to the tabulated values.

While eq. (VI.15-16) should give an adequate representation of

thermal diffusion for reactive flow calculations, we should point out
6 7

that past calculations of kT for binary mixtures have not agreed as

closely with experimental values as have similar calculations of the

other transport coefficients. Thus the reader may require higher-order

approximations for other applications.
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C. Additional Remarks

Our study has shown that current literature on the theory of thermal

diffusion is not uniform in the definition of thermal diffusion coeffi-

cients and that treatments of multicomponent mixtures are quite complex.

To produce the above discussion of the topic, we have, therefore,

often been forced to put together fragmentary information coming from

several sources, and our arguments have often been heuristic rather than

rigorous. Where possible, we have tested the consistency of the various

formulations, and as indicated in Sections A and B and Appendix F, we

have found them to be in agreement.

Two theoretical treatments which we have not mentioned are mean-

free-path theories68- 72 and the phenomenological approach of van de Ree,

et al., based on the thermodynamics of irreversible processes.
73-4

The mean-free-path theories are only qualitatively useful because of

the difficulty in computing accurate mean-free-paths related to

"number density transfer" and "mean thermal speed transfer." The

formulas derived by van de Ree, et al., are equivalent to the treatment

of Monchick, et al.,6 5 ,66in the case of binary mixtures; these equations

might thus be of use in detailed studies of thermal diffusion.
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* VII. Sumary of Equations

For ease of reference we summarize the theoretical equations of

major interest in evaluating transport properties of multicomponent

mixtures of neutral gases. The definitions of the symbols appear in

the body of the report on the pages identified in Section VIII "List

- I of-'Symbols".

A. (Ordinary) Diffusion

1. Self-Diffusion

rfl i0.0026280 2 (c -sc1

2~i (11)(Me (111.12)Pa a i t MT

2. Binary Diffusion

T (M i+ M

-0.0026280 i j (cm 2 sec-) (111.3)
PCa~ S t)T) 2 Mi.Mi

B. Viscosity

1. Pure Gas

ri -266.93 X 10- -7- I..
fll 2 (2 ,2)* i*) (S cm -see-' )I~
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2. Multicomponent Mixtures (V > 2)

V kni

V- V ri9

-E i

ik

V X k

C.- Thra Codutiit

M X i 4

+. 4- + LIi -91

- 2 M k 44



Ei a 0.115 + 0.354 pi
R (V.8)

- 0.115 + 0.354 Y

2. lMulticomponent Mixtures (v > 2)

Xmix Q IX m] 1i + X mi 1 . (V.16)

i-i 1 + - i Xk ik

k~i

Gik 105 ik (V-13)

D. Thermal Diffusion

a i [mix(i)Ji v (C.1-2)

~ik-i
k,~i

6 x xMM iIi a a
(kj l - .1 (t 1j 1) ML L i + L . . -~ jn k LAi]1  'xi' M +~1M i4i)

(VI.i6)

-E x xi i (ijnWi~l zimi!

ij 5kn+ M
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VIII. List of Symbols

The following is an alphabetic list of symbols with the number of

the page on which each symbol is defined:

(a) A,, 6 AV 7 A, 10 A 11 ao' 20 aij, 39

ai, 39 a, 28 ai' 58 Aij, 63 A* , 65

(b) 1,6 Bi , 7 B 1, 63 B* , 65

(c) C ()6 Ci 1 , 7 CC, 3 Cp9 27 cvi± 27

Ciip 39 C* 40
ii,

(d) 7, 1 dp6 Ouj 10 &9ij' 11 o47ii' 13

r& 119 15 Dij, 17 [Dij i s 17 D emP, 18 Ai, 34

DTi 34 Dii, 36 h , 75 Sfi' 81

(e) E, 2 e j' 11 E,, 12 nip 13 [n11 , 19 [ ml r 20

nrx, 23 E, 27 c,58

(f) f 4 ff0], 4 ff[1] 4

(g) y7, 27 G 30 G1, 59 , 67 j;' 70 71

± 1k' L~

sie' 78

46
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(h) HCB, 3 58 <Hi ,59

(j) J, 4

(k) k, 4 kri, 31 [T3i], 39 cmix' 57

00 int(1) Li 1 o i 25nX 25
mix' mix' 25 mix

Acomp o i nt  270
XCP 25 [iX l , 26 Xi' 27 Xi ' 27 x 1], 29

kIX 1,29 Lit, 63 IL'I,63 Li, 64 ILl, 64

(m) mi , 4 Mi , ii iJ 41

(ni) nil 1 v, 4 n, 6 9, 20 ?'2, 26 n 1 68

(1,1) W(1, 1) (1) (2, 2)*(o) S1 j 11 ai -j , 12 a-lj (1), 12 n j , 19

S, 19 (2)(2), 19

ij ij

(p) ,. 2 P, 6 O,6 (o 10 ijl *l 13

k' 13 Pmix, 15

coup imt int
(q) Qi, 1  3,2 op,25 ,27 3n,69
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(r) p,1 r, 4 , r, Ii r, 13 R, 20 Q, 21

Ri, 974

(s) S m ) 8 s, 10 S, 10 S', i0 S" 11 a 11n ' cj

ai l 12 ai, 28

Q) () r'
Wt: t, 1 T, 4 ti() 8 t( im  ,8 T*j I T, is

T m, 15 21 5_ 7

(u) , 7

(v) Vol 1 il, 4 i' 5 vi* 6 i 35

-a -av., 35 _,68 _-i-, 68 ,7 < ,7
-ol ' 070

(W) wi, 7 wi, 7 9,34

dx£ dx~ a n
(x) X1,4 xi , 6 Xdx, 68 ,7- ' 76

[dzJdx]~m ' 76 x ie, 78

(Y) y?' 82 Y, 82

(z) Zki , 
24
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Appendix A. Transport Properties and the Conservation Equations

Below we summarize and discuss the equations for conservation of mass,

* particle number, momentum, and energy of multicomponent gas mixtures under

the assumption that external forces and radiation processes are neglibible.

These equations form the basis for models of reactive flows, and we

shall see that the transport phenomena enter the calculations through the

conservation equations for particle number, momentum and energy. For

detailed derivations, we refer the reader to the treatments of 
Williams75

and Landau and Lifshitz.
76

The "contin4ity equation" which represents conservation of total mass, is

.2p- + V * (P v ) 0 (A.1)at - - -

The transport coefficients do not appear in Eq. (A.1) because the related

transport phenomena do not directly affect the conservation of total mass.

However, transport phenomena will affect the conservation equations for

mass and particle number of each species i treated separately, since the

velocity y- may differ from the fluid velocity v . We may express the

conservation of particle number for species i as

an i
-- ,. - V • (ni.2) + Q, Lin,
at - j~) i i

(A.2)

" - V " (niv) - V " (nj-) + Qi L ni
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where Qi and L. refer to chemical production and loss processes for species i.

77
In the formulation of HCB, the diffusion velocities (V are directly

HCBrelated to the coefficients of ordinary diffusion, tD I, and thermal
ij

diffusion, {DHCB} by the equation
Ti

r!2 V m .DI CB d . D CB V 2n T . (A .3)

'iP j ij -j nm Ti -
ij.1 i i

We have used the superscript "HCB" because other authors define these

coefficients differently; Section VI shows the equations of CC and Waldmann

which correspond to (A.3). We may also calculate (V from the set of v-1

independent equations
78

V

d + V n T -Z (V, V (A.4)-
.=i Ti ~J-1 D -- -

V xX

j-l W 11 -

plus Eq. (II.10), which defines d, and Eq. (11.21),

V

nm -0 (11.21)

We discuss kT,, the thermal diffusion ratio of species i, in Section VI.B.

Eq. (A.4) makes use of the fact that each multicomponent diffusion coefficient

in the formulation of CC, is approximately eqal to Lj, the first

approximation to the binary diffusion coefficient We have discussed

this in Section III.
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The equation for conservation of momentum in the absence of external

forces is

-(Pv) v(Pv V) - • P. (A.5)at -( -o0-

In Eq. (A.5), the pressure tensor is

+ (A.6)

where U is the unit tensor and

T 2T -= n [_v + (Vv) T ] + (- nMi - ,i)(V • )U. (A.7)

In Eq. (A.7), nmix is the coefficient of viscosity of the mixture, ( )is

the transpose operation, and Kmix is the "bulk viscosity" coefficient. The

bulk viscosity is closely related to relaxation effects between transla-

tional motion and the internal degrees of freedom of the molecules and is

equal to zero for mixtures of monatomic gases. Williams75 indicates that

K mix is usually negligible for combustion processes.

The equation for conservation of energy is

BE _ 7 (Ev) v (.8
at -- (A.8)

where E is the energy density and I is the heat flux. The equation defining

energy density is
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.1 E 1 S~ P o , (A. 9)

in which e is the internal energy per unit volume. The heat flux, j,

is given by
30,79

VV v n CBi + x8  T H a+ ii (i-V).V (A.10)

mi iml j=l miEb. 1  i j

In Eq. (A.10), Xi is the thermal conductivity of the gas mixture when we

ignore the transfer of energy between translational and internal degrees

of freedom of the molecules and the effects of chemical reactions. The

second term includes the transport of energy by excited quantum states ai

of gas i and also accounts for the transport of heat resulting from changes

in chemical composition with temperature. This term is thus directly

related to the molecular internal degrees of freedom and to chemical reactions.

We have suppressed the index i of ai for brevity and have used 9 l to denote

total number of moles in the mixture per unit volume. We also point out that

Eq. (A.1O) treats each quantum state ai as a separate species; thus V is the

diffusion velocity of component i in state ai and Hi is the enthalpy per mole

of gas i in the quantum state a. The last term in Eq. (A.10) represents the

"Defour effect" and may be restated in terms of the diffusion ratios {k}

(see eq. (A.13)).

Appendix D shows how we may separate the second term in Eq. (A.10) into

two parts--one which depends on the quantum states {ai I of each component i

and the other which depends on the average enthalpy per mole of each component i:
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int comp
q2nd Term +

(A.n1)

V H + 9.@xiV, <H i >

i-l a i-i

The quantity Gi is the molar flux of component i in quantum state al, and

<H i > is the enthalpy per mole of component i, averaged over the quantum

states {ai.1. Thus <Hi> is the molar enthalpy which we would expect to

obtain experimentally for a mixture in equilibrium. Under the conditions
int

listed in Section V.A of this paper, q of Eq. (A.11) becomes

int mt
in =/ >G Hi-- VT (A.12)

-i i mix-

where A int then represents a correction to the thermal conductivity of the
mix

gas mixture. We derive a useful equation for i in Section V.B.mix

The term Rcomp in Eq. (A.11) represents the transport of heat caused

by changes in chemical composition with temperature, and under some condi-
0,0comp Ic mp T. eaueheeon-

tions,30,80 we may transform j to a term -A omp VT Because these condi-a mix -

tions include chemical equilibrium at the local temperature T, which does

not hold in general, and because the form of _comp in Eq. (A.11) is con-

comp
venient for calculations, we do not attempt to derive X mix in this paper.

81 82
By comparing terms in the derivations of _ given by HCB and CC

we find that the Defour effect may be represented by
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HCB

p ~ i  kT ! D j in -p kl -  (Y - )" (A.13)
i- -1- i

We may also derive (A.13) by using Eq. (A.4) and Eq. (VI.5) in Eq. (18.31,6)

of CC.8 2  With Eq. (A.1l-13) the heat flux becomes

. o ~int __ .
(Xx + A )VT +V lii + p ~ k Y (A.14)

imi i i
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Appendix B. Sonine Polynomials

Here we use the notation of HCB, defining the Sonine

polynomials by the equation

() m (--!)J (m+n)! .' (B.1)
n(m) (x) (n+J) (m-):j

with the orthogonality condition:

0o

x n eX S(m)(x) S m '(x) dx m! (B.2)fn n1 M! MM

2If we substitute W2 for x, and use n = 3/2, 5/2, eq. (3.2) gives us
If0

f f (m) (W 2) V dV 3nik (B.3)
j 3/2 i V i mi mO
0

and

ff E0 1 S(m) (W12) V14 d( 1n kT )2 (B4
J 5/2 1i id l i

Qi) (mn)
When we expand A, and Ci  in terms of the set {S and Bi in terms of
(m) 3/2
{ 5/2} and then substitute these expansions into the integral equations for the

transport coefficients, we obtain expressions of the form of eq. (B.3) and

(B.4) respectively. For this reason, the Sonine polynomials constitute a

convenient choice for calculating approximate values for the transport

coefficients.
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Appendix C. First Approximatios to X°

o 37
In this appendix we compare the values of [mix 1 derived by Mason,

Muckenfuss and Curtiss, and CC ; we do so to insure that we can derive

eq. (V.12) starting with any of these "first approximations" and to
indicate how the derivation proceeds. From this we shall see that, in

eq. (V.11),

0

[mix(i)] 1 .Vl

Xi k-l

k#i

The importance of eq. (C.1) is that we have a simple method of

calculating the quantities [Xx(i)Jl, which we need in order to compute

approximate values of the thermal diffusion ratios (Section VI).

First we must develop equations for (X 0] from the formulation of
mix 1

CC41 which appear in the same form as those of Mason 37 and Muckenfuss

and Curtiss. 39 . In the notation of CC, we have

ai - [X jXi)] (C.2)

which are solutions to the set of coupled linear equations,

a i Lii + r aj L - xi (i-l,29 .... ,V), (C.3)

Jiij~i
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where

- V Txk 6m 2 + (5-4B k) 2 + 8mimKAlk

Lii 1[] + i 5 ~ik]1  (mi + i)2

xiTmimj ll-4Bii - 8Aij (C.4)

ij 5Pij ] 1  (i + n)2: i~j (m m

And Aij and B are ratios of collision integrals defined by CC. Next

we solve eq.(C.3) by applying Cramer's rule to obtain

coll"n

L L . x ..... L
11 12 V 1V.

L 2 1  L 2 2  x.2 L2,

Lvi Lv2 x V LV
a vIL (C.5)

where IL is the determinant of the matrix with elements (L }. We

now multiply the ith columns of the numerator and the denominator,

respectively, by -4xi for each i - 1,2,...,v and factor 4 from the Zth

column of the numerator to obtain
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column

L 1 LI2 .. .-XlX ... VLlv

L21 L22  *-x2,x . . I. 2v

L L La. 4 Vi v2 V V L (C.6)
ILI

where ILl is the determinant of the matrix with elements (Li] given by

4x2  v 4Tixxk (ll-4B )m? + 8m.
L 5 - ik I ±mkA (C.7)
ii 1 k 1 i1 (Mi + mk)

k~i

and

L - 4T xi x mM (11 -4B

ij 5P i +M ij - 8Ai)

By eq. (V.11), eq. (C.2), eq. (C.6) and eq. (C.7), we then have

L 11 L12 .. lv x1
L21 L22 ........ L2 x2

LV1 L 2.......... .L x[x L L...............L

1 4 - • (C.8)

ILI
where the notation (CC identifies the formulation as that of CC.

Eq. (C.8) is in the same form as the corresponding equations of

Mason and of Muckenfuss and Curtiss'°  the elements {LijI differ,

however. To compare the respective sets (L j}, we use the following

relations in eq. (C.7):
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m Mmi Mi

- (i,j 1, 2,.......,v ) (C.9)mi+M M i 4j

84, 85and

AC .1 m A* CB ec u B *HC3
ij 5 ijij 5i1

CCC - 1 9 53  1 + CCC- 1 97 0  C*HCB (C.1)
j ij 5" ii

The quantity C.. is another ratio of collision integrals which we

encounter in Section VI, and the notations CC-1953 and CC-1970

differentiate between the second and third editions of CC. We then

have, from the formulation of CC,

4x2  2 + *

L - - 16T_1 4 iki ik I ik
ii XI 25P k-l ~ '1(M +Mk)7

k i

16T xix MiM 55 * *

Lij 25P - 4A 1. (C.ll)

The corresponding equations derived by Mason 37 are

ii [ll z k ll 6Dikll (i + Mk)/
kMi

and (C.12)
xx M

L -(1 25P 9ij I (Mjj 4A ij

and the matrix elements of Muckenfuss and Curtiss14' 39 are
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162 Xk 15 M2+2 2 2•

kO i

and (C. 13)

16T x x MiM1  55Li -P {T l M* 3Bij - 4Aij }•
i j ij 1  (Mj+M.) jj i

i#j

Notice that the only differences among the three sets of results occur

in the bracketed portions concerning the integrals A and B ; in fact,

Li (i# j ) is the same in eq. (C.11) and eq. (C.13). To derive the

approximate expression in eq. (V.12) according to the method of Mason

and Saxena,14 we would set L (i~j) - 0 in eq. (C.11-13). We would then
ij • *

represent the portions of L containing Mi, Mk, Aik, and Bik by anii i, i

empirical constant. Since the remaining portions of eq. (C.11-13)

are identical, all three formulations will lead to the same semi-

empirical equation.

Using the above procedure on eq. (C.5), we can see that eq. (C.2)

gives

xi
[mix(i)]I L (C14

14

Continuing with the treatment of Mason and Saxena, the reader can

confirm that eq. (C.1) is correct. As we indicated previously, this is

important in calculating the coefficient of thermal diffusion, since we

have a simple method of evaluating [Xm±x(i)]l' which appears in the

approximate expression, eq. (VI.14).
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Appendix D. Decoupling the Effects of Molecular Internal Degrees of

Freedom and Chemical Reactions in the Heat Flux Equation

In Hirschfelder's treatment of the thermal conductivity of a multi-

component gas mixture30 (see Section V), he has discussed the heat fluxes

int comp
q and the equations for which depend on the molecular internal

degrees of freedom and the chemical composition of the mixture, respectively.

In doing so, however, he did not show how to decouple the terms representing

these effects in eq. (A.10) for the total heat flux _S. Instead he assumed

that eq. (A.11) had already been derived and, therefore, that he could

consider each factor independently. Below we show how to derive eq. (A.11)

by defining the heat fluxes S and _comp in a manner consistent with

Hirschfelder's discussion. In Appendix E, we demonstrate that our expres-

sions for qint and Acomp do in fact decouple heat transport caused by changes

in the population of quantum states and the chemical composition with tem-

perature, and we show that Hirschfelder's discussions are rigorously valid

for chemically reactive mixtures of polyatomic molecules.

Our derivation begins with Eq. (A-1O) for the total heat flux q, which

gives us

A' VT + & Hi (D.1)A mix Ai-

in the absence of thermal diffusion. In Eq. (D.1),

01 x L Va(D. 2)
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is the number of moles of component i in quantum state a which are moving

in 1 sec through a 1 cm2 surface which is perpendicular to the velocity

V., and H is the enthalpy per mole of component i In quantum state a

The quantity V is the diffusion velocity of component i in quantum state

ait given by

Vt = a-- v (D.3)
Y4 - -0

and x is the mole fraction of component i in quantum state ai , given by

ia
nx in (D.4)

with
V

- i" (D.5)
i-i a

We have left the index i off a in all equations for brevity. Notice also

that these and many subsequent equations are restatements of those in Section

II assuming that each combination (i, ai) is a separate component of the

mixture. Thus we have for the fluid velocity v the relation--o

v1 \ \ nm (D.6)

-io a

which gives us the equation
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V

Sno'mV -o (D. 7)
i-i aiii

for the diffusion velocities. Since the number of moles per unit volume

is related to n by

(D.8)
N

where N is Avogadro's number, Eq. (D.7) also represents a constraint on

the molar fluxes {P, i.e.,

aL -a--a
i-la i-l 

(D.9)
V -, M g Mi 0,
i-l a -

where Mi is the molecular weight of component i.

In order to derive Eq. (A.ll) from Eq. (A.1O), we define qint and

comp
by the equation

mNix - + comp (D.1i0)

along with the equations

int a
ill (D.1)
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cam -His (D. 12)

and

.a~ s 1 -(D. 13)

Next we define the molar flux

where'? is given by

qc~ P (D.15)

the average ielocity of component i in quantum state a relative to the mass

average velocity of component i. From Eq. (11.6) and Eq. (13.15), we obtain

C1I < ~ -y (D.16)

where

n 1 i - (D.17)

with the notation < > signifying an average over the quantum states of

species i. We note that, in equations (D3.15) and (D3.17), we have used

ni a j i(13.18)

and
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Pi " ni mi  m i .  (D.19)

From Eq. (D.14)-(D.18), we obtain

I = 0, (D.20)

which is the condition used by Hirschfelder30 to derive Aint for a
.mix

nonreacting gas mixture in a steady state. Thus Eq. (D.11) will give the

same formula for X i n t in the more general case of a reactive gas mixture.
mix

Now we must show that our definition of Comp in (D.12) is compatible

with Hirschfelder's derivation of the heat flux resulting from changes in

chemical composition with temperature. From Eq. (D.2), (D.3), (D.13), and

(D.16), we have

-i -1 - - -> -

From Eq. (D.6 ) and (D.17), we see that

V ni ro( < V L>- v~o 0 . (D.22)

Further the total molar flux of species i in a reference frame moving at

the velocity v is given by--o

G + .l,<Y (D.23)
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From Eq. (11.20) and the accompanying discussion of diffusion velocities

V we also have

Thus from Eq. (D.22)-(D.24), we obtain

~ v ,(D.25)

and

Using Eq. (D.26) in Eq. (D.12), we find that

comp VHo
aa

(D .27)
V

where as in Eq. (D.17), we have defined ( li). as the enthalpy per mole

averaged over the quantum statesai

(H) -- Y z H1  (D.28)

We interpret (H ) as the enthalpy which is measured experimentally; thus

Hiruchfelder's assumption that the gas is in equilibrium at the local

72



temperature T is necessary if we use tabulated values of the enthalpy in

our models.

Hirschfelder30 used an equation identical in form to Eq. (D.27) to

discuss the effect of changes in chemical composition with temperature upon the

thermal conductivity of a gas mixture; again, however, his treatment contains the

implicit assumption that the terms associated with molecular internal

degrees of freedom will not affect the results. In Appendix E, we outline

Hirschfelder's discussion and using the equations which we have developed

in this appendix, we show that the above assumption is correct.
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Appendix E. Derivation of Aint and X comp
mix mix

mit an cofro
Below we outline Hirschfelder's derivation of i and A m frommix mixint .comp

1 and a respectively. In our discussion, we will use the more

general framework of Appendix D to demonstrate the validity of his treat-

ment. As an example, we will then investigate in detail the case of a gas

with only one chemical species.

To simplify our discussion and to parallel Hirschfelder's derivation,
30

we will assume that a temperature gradient exists only along the z-axis, that

no heterogeneous reactions take place (i.e., that the bounding sirfaces are

chemically inert and have no catalytic activity), and that the system has

reached a steady state. The last assumption means that

i M 0 (E.l)
at

for each species i, and eq. (A.2) becomes

(n=[voV Q - Lni (E.2)

Following Hirschfelder, we transform to a local reference frame in which

the fluid velocity v0 is zero. We may then express eq. (E.2) in the form

- Ri ,  (E.3)
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where Ri is the net number of moles of component i formed per c4 per

second. Substituting eq. (D.23) into eq. (E.3), we have

__ a = a
9' =-g Ri, (E.4)

and we see that only the part of the molar flux which is associated with

compine.(12in eq. (D.12) is related to chemical reactions, as we would expect.

To transform eq. (D.ll) and (D.12) to expressions of the form

(E.5)

we assume that thermal and pressure diffusion, radiation processes, and

external forces are negligible. Under these conditions, eq. (A.4) becomes

dx C v x ag-xg
F-" E - (E.6)

in which we distinguish between molecules in different quantum states.

We have suppressed the notation [ in representing the first approxi-

mation toago, the binary diffusion coefficient for component i in state
-I to~ij,

and component j in state . We may now separate the effects of internal

degrees of freedom from those of chemical reactions by substituting Eq. (D.13)

into Eq. (E.6) to obtain
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wet comp

dx0] dx0  dx i
i i _j_[J (E. 7)

dz Idz d z
where xait v x0 GS - 0

Iii I1' Gj i
E .T ai (E.8)

Jul 6 91 OPij

and 0 comp - a

I I1 8 i(E.9)

In Eq. (E.8) and (E.9), we have again suppressed the dependence of i and B

on i and j, respectively. Summing Eq. (E.8) over ai' and referring to

Eq. (D.20), we see that

int
dxi o E.O

0 i
0-(E.10)

so that the gradient in chemical composition is given by

dxi [d ] comp

Z~dzJ(E.11)

Eq. (E.11) demonstrates the natural decoupling of the effects of internal

degrees of freedom and chemical reactions which the framework of Appendix D

permits. Performing the sum over ct in Eq. (E.11) and noting Eq. (D.23), we

find that

dxi  V

-d -i - 1, 2, .. , v), (E.12)
Jul ij
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where we have dropped the dependence of the binary diffusion coefficients
30

on quantum states ctand 8 following Hirschfelder's assumption. (We have

discussed the assumption that Ob"is independent of a and 8. in Section V.A.)

ij .3 nScto ..

If we further assume chemical equilibrium at the local temperature T,

Eq. (E.3) becomes

Ri(xl, x2, ...D T, P) - 0, (E.13)

from which we may obtain a set {x ie(T,P) describing the equilibrium compo-

30
sition of the system. Hirschfelder indicates that these will provide a

first approximation to the actual composition. We may then solve Eq. (E.12)

for the set (giI to obtain
3 0

dx
HCB

where D is a multicomponent diffusion coefficient (formulation of HCB)
ij

and the subscript "e" indicates that we have substituted the set {xie(TP)}

into our solution. From Eq. (D.24) and (D.27), we see that

comp X comp dT (E.5)
q " miX d'z (.

where

Acomp _ V HCB dxie
mix P ii M (Hi dT (E.16)
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For further discussion of Eq. (E.16), we refer the reader to Hirschfelder
30

and Butler and Brokaw80 .

We now return to Eq. (E.8) to derive an equation analogous to Eq. (E.5)

and (E.15) for the thermal conductivity related to internal degrees of freedom.

Performing the sum over a and using Eq. (D.4), (D.18), and (D.20), we obtain

int

rdz] G + (E.16)

in which we have again assumed that the binary diffusion coefficients areijar

approximately the same for all ai and aJ. If each component i is in

equilibrium at the local temperature T, the mole fractions x are functions

of local temperature and pressure, and we have

int ri int

di xi dT (.7[dz [dTJ dz (.7

We may now use Eq. (E.16) and (E.17) in Eq. (D.11) to obtain

int X nt dT (E.18)
q " mix .

in which int

dxi1

it (E. 19)
mix X

ii J1 i
joi

78



To complete the discussion, we will now compute X mtfor the case of

a gas consisting only of component i. From Eq. (E.19), and the fact that

i j (E.20)
0 1 j

we have

x t -H~ (E.21)
i ii dT- i

ai

By Eq. (D.28), we know that

(Hi x C1 H., (E.22)

and the molar specific heat at constant pressure for the gas i is

d (H > d Hadx a

c == -,-, 0 L HO - (E.23)
pi dT ~ i dT id

The first term is the "translational" contribution to the heat capacity

30
and equals 5pJ2 . Thus we find that

x int - - (E.24)
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and the total thermal conductivity for species i becomes

A A '%&~f (c 5R.(E.25)
i :i. ii pi

Defining 6. by the equation

fi 2X0  (E.26)i

we obtain

-j-l + 4-6E(6(.7
xfi 5 fi R - E (fj) E.

Using detailed calculations with the Buckingham and Lennard-Jones potentials,

Hirschfelder 29has calculated

6 fj , 0.885. (E.28)

This gives us the value of E shown in Eq. (V.8).
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1HCB CC
Appendix F. Demonstration that Ti for Binary Mixtures

In this appendix, we use the formulation of kinetic theory given

by CC to calculate k C for a binary gas mixture, and we compare the
~result to the expression for k CB. We do this to demonstrate the

following: that (a) different formulations will give values of kTi

which are equal, (b) Ai. and D are not equal, and (c) eq. (VI.6)
CC _HCB and W i

relating DTi, DTi , anDTI is valid. We calculate A in terms of

Sij, which is equal to Dij for binary gas mixtures, from the equation 18

YA. _ -! (F.li)
Aij Y

where

12 12

Y 1 2  22 22 (F.2)

21 ~222

P1 P2  0

x x

and Yij is the cofactor of -- in Q. From eq. (F.1-2) and the equality
ii i

ofsi j and 0ji, we obtain

022P 2 2 x ( F . 3 )
A11  1x 2 - 2x22 x1-2

and
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_ _ _ _ _ _ .. 'ANEW..

1 2 - x 1x2  x2 
2  ( 1.)

12 1 22 224x1(

CC also state the condition

V x
a 0,(.)

1j- j'

which gives us
x I  2 . and 2 x x.1

By eq. (VI.9) and eq. (VI.11), we have

DCCA CC CC -CC +(7)
T 11 "7H + A 1. (A11  A1 2 ) (F.7)

Using eq. (11.5),

0 p +  2 (F.8)

and the above equations, we find that

2. k CC
CC 2 + 12 CC 12 Ti 2 .1 2 12 c 2 lDI - kl - . (7.9)
Ti 12 (  Ti°2

We note that eq. (11.6) and eq. (VI.6) give us

-aaM1, 2 m n2m2, (11.6)
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and DCuDC

PIDTi Ti1 (VI. 6)

Substituting these equations into eq. (F.9), we obtain

k9 kccn2m m
DHB 12 TI. 1 2 (P.10)

c8Solving for k-and comparing this with the corresponding equation8

fHCBIfo ,k- we find that lC {B(.1

cc nT1 ICB
Ic~i~12ii2mlm2  T
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